There are FEW resources for human.

Crisis of Food Demands

805 million people: worldwide chronically undernourished
 162 million chronically undernourished people are young children
 Central Africa and South Asia are experiencing the most hunger

Crisis of Energy Demands

Limited energy resources

 \rightarrow As petroleum resources are running out of, the renewable energy must be exploited.

Source: International Energy Outlook, 2011 / BP Energy Outlook 2030, 2011

Crisis of Water Demands

- Limited water resources
- \rightarrow 40% of the world's population lives in severe water-stressed areas;

by 2050, 2.3 billion more people than today.

Without the Sun, where can you get FEW?

European Commission @ Brussels

Seawater

Seawater The origin of all creature

We may be from the sea.

WE can be from the sea.

Membrane

Water & Energy transport for all creature

Membrane

Water & Energy transport for all creature

Technology

Technology should be green... & FEW resources for human Sustainable .

- Seawater...
- Membrane...
- Technology...

Green <u>membrane</u> technology to produce water & energy from <u>seawater</u>.

Membrane-based Desalination Technology in Water-Energy *nexus* Industry

Joon Ha Kim

Gwangju Institute of Science and Technology (GIST)

Outline

Infrastructures...

• 4 main infrastructures :

Transportation, Telecommunication, Electricity, Water

Investment rank (2011~2030):

Water>Electricity>Telecommunication> Transportation

Prospect of Worldwide Investment for Infrastructure

Infrastructure	2001 to 2010 (annual average)	2011 to 2020 (annual average)	2021 to 2030 (annual average)	(Unit: US\$ billio
Roads/Railways	269	299	350	
Telecommunications	654	646	171	
Electricity	270	383	513	
Water	576	772	1,037	
Total	1,769	2,100	2,071	

Report from Organization for Economic Cooperation and Development (OECD, 2008)

Water & Energy production using membrane technology

Membrane Technology can be an alternative solution for Water & Energy problems at the same time, and for the need of co-generation infrastructure

Membrane-based Desalination R&D Roadmap in Korea

(Korea Agency for Infrastructure Technology Advancement In the Ministry of Land, Infrastructure, and Transport, MoLIT)

Outline

Osmotic Potentials

(RO, FO, & PRO)

Driving force: Chemical potential (Osmosis)

- Driven by chemical potential (Osmosis) difference
- Water passes through membrane

Principle of Osmosis Membrane

Semi-permeable Membranes

RO Membrane Technology

RO Membrane Technology becomes economically feasible..... But, competition for reducing energy consumption just begins.

Features of seawater RO (SWRO) process

- Membrane material: cellulose acetate, polyamide
- Membrane module configuration: spiral wound type / hallow fiber type

Advantages

- Lower energy consumption (3~4 kWh/m3) compared to distillation (10~16 kWh/m3)
- Well systematic process among the desalination processes
- Production of high quality freshwater (Na+ < 80~300 ppm)

Disadvantages

- Membrane fouling
- Membrane cleaning/replacement
- Requirement of pretreatment system (MF, UF, DAF, DMF, and anti-scalant)
- Increase in cost to produce freshwater

SWRO process market

Future forecasts of SWRO desalination plant

Ref: From Various Sources

Parameter	Today	Within 5 years	Within 20 years				
Cost o (2011 Mem	Membrane 2-D modification \rightarrow						
Construc (US\$/r Still	Still promising for next 20 yrs !						
Power use of SWRO system (kWh/m ³)	2.5 ~ 2.8	2.0 ~ 2.3	1.4 ~ 1.8				
Membrane productivity (m³/day/SWRO membrane)	28 ~ 47	35 ~ 55	95 ~ 120				
Membrane useful life (years)	5 ~ 7	7 ~ 10	10 ~ 15				
Water recovery ratio (%)	45 ~ 50	50 ~ 55	55 ~ 65				

* Minimum theoretical energy for desalination at 50% recovery: **1 kWh/m**³ * Practical limitations: No less than 1.5 kWh/m³

* Achievable goal: 1.5 – 2 kWh/m³

Future technology of water treatment using membrane

FORWARD OSMOSIS Water molecules migrate by natural osmosis, without energy input, into an even more concentrated "draw solution," whose special salt (green) is then evaporated away by low-grade heat. On the market: 2010-2012

NATIONAL GEOGRAPHIC

CARBON NANOTUBES

An electric charge at the nanotube mouth repels positively charged salt ions. The uncharged water molecules slip through with little friction, reducing pumping pressure. On the market: 2013-2015

BIOMIMETICS

Water molecules pass through channels made of aquaporins, proteins that effi ciently conduct water in and out of living cells. A positive charge near each channel's center repels salt. On the market: 2013-2015

> Current Issue May 2010 Table of Contents »

Principle of FO membrane process

Principle

- Naturally driven process without hydraulic pressure
- Run by chemical potential difference (i.e., concentration difference)
- Thermodynamically, reversible process

Advantages

- Low energy consumption
- Theoretically, <u>No</u> energy is required for membrane process

Limitations

- Lack of suitable membrane for FO
- Lack of appropriate draw solution

Features of FO process

Membrane process

- Water transports through membrane toward draw side
- Draw solution is diluted

Separation and recovery process

- Pure water is separated out from diluted draw solution
- Draw solution is recovered to be sent back into membrane process

- Naturally driven process by osmosis
- Theoretically, <u>no</u> energy is required for water production
- Contrary to RO, energy requirement is very low

Principle of PRO membrane process

(pressure-retarded osmosis)

- Chemical potential difference between feed and draw solution
- Depressurizing the permeate through hydro-turbine \rightarrow Energy

Comparison of FO & PRO processes

Similarity

- Two flows (feed solution, draw solution)
- Utilization of osmotic pressure

Difference

- Membrane orientation
- FO : Draw solution recovery
 - **PRO** : Pressure exchanger

Features of **PRO** process

- Concentration polarization (ICP, ECP), reverse draw salt flux
- Negative effect of coupling between ICP and reverse salt flux

Future forecasts of PRO power plant

Benefits of **PRO** power plant

Challenging !

	PRO (Seawater)	PRO (Brine)	Solar Power	Wind Power	Waste Power	Fuel Cell
Generation cost (\$/kWh)	0.21	0.16	0.86	0.19 – 0.28	0.13 – 0.26	0.26
Years of operation	17	17	20	17	20	15
Utilization Factor	>85	>85	12	20	65	91

Recoverable energy from ocean \rightarrow **2,000 TWh** (IEAIOES, 2004)

** provides energy to the 40 million household

Abundant marine resources → **sustainable**

No thermal pollution

Ref) Akihiko Tanioka, "Power generation by PRO using concentrated brine from seawater desalination system and treated sewage; Review of experience with pilot plant in Japan ", 3rd Osmosis Membrane Summit (2012)

PRO power plant applications

Outline

Electro-chemical Potentials

(ED & RED)

Principle of Electro-dialysis (ED)

- Principle of Electro-dialysis (ED)
 - Voltage-driven membrane process
 - <u>Electro-chemical potential difference</u> used to move salt through an
 - ion-exchange membrane
 - Styrene-Divinylbenzene copolymers

Ref. Desaldata.com, TheWaterTreatmentPlant.com

Saline Feed

Features of ED process

Advantages

- Without phase change
- Relatively low energy consumption
- Particularly suitable for separating non-ionized from ionized components
- Not affected by osmotic pressure
- Lower O&M cost

Disadvantages

- Not remove organic matter, colloids and SiO₂
- Only limited in low salinity (BWRO)
- Feed water pre-treatment is necessary
- Elaborate controls are required, the optimum operation can be difficult
- Selection of materials of membrane is important to ensure compatibility with the feed stream

ED Applications

REDUCE

Electrolyte Content

- Potable water
- Food products
- Nitrate from drinking
 water
- Cooling tower water
- Boiler feed water
- Rinse water

.

- Effluent streams
- Sugar and molasses

RECOVER Electrolyte Content

- Pure NaCl salt
- Al(l) salts
- Ni (ll)
- Zn (ll)
- Salts of organic acids
- Amino acides
- HCl

•••••

Miscellaneous Applications

- Salt splitting
- Metathesis
- Concentrate RO brines
- Ion substitution

•••••

Principle of **RED** process

(Reversed Electro-dialysis)

CEM (Cation-exchange membrane) **AEM** (Anion-exchange membrane)

- Electro-chemical potential difference between brine and dilute \rightarrow driving force
- Two membrane types: CEM and AEM
- Electrical current and the potential difference → Energy

Comparison of ED & RED

Similarity

 cation-exchange membrane (CEM) and anion-exchange membrane (AEM)

Difference

- ED : Electrolyte cell, one flow
- RED : Galvanic cell, two flows

Features of **RED** process

- <u>Concentration polarization</u> at membrane surface
- Not special <u>RED membranes yet</u>

Possibility of <u>membrane poisoning</u> due to rinse solution

Outline

SWRO hybridization with MD

Increase of product water

SWRO hybridization with MD & PRO

Increase of product water + energy

Increase of product water + energy

Increase of product water + energy + green discharge

Discharge !!!

Seawater

Unlimited resource for WE ,,,

Membrane

Technology should be green... & FEW resources for human Sustainable .

- Seawater...
- Membrane...
- Technology...

Green <u>membrane</u> technology to produce water & energy from <u>seawater</u>.

Membrane-based Desalination R&D Roadmap in Korea

(Korea Agency for Infrastructure Technology Advancement In the Ministry of Land, Infrastructure, and Transport, MoLIT)

All WE may be from the sea.

